1,797 research outputs found

    Supersymmetric coupling of a self-dual string to a (2,0) tensor multiplet background

    Full text link
    We construct an interaction between a (2,0) tensor multiplet in six dimensions and a self-dual string. The interaction is a sum of a Nambu-Goto term, with the tension of the string given by the modulus of the scalar fields of the tensor multiplet, and a non-local Wess-Zumino term, that encodes the electromagnetic coupling of the string to the two-form gauge field of the tensor multiplet. The interaction is invariant under global (2,0) supersymmetry, modulo the equations of motion of a free tensor multiplet. It is also invariant under a local fermionic kappa-symmetry, as required by the BPS-property of the string.Comment: 12 pages, LaTe

    Energy radiated from a fluctuating selfdual string

    Full text link
    We compute the energy that is radiated from a fluctuating selfdual string in the large NN limit of AN−1A_{N-1} theory using the AdS-CFT correspondence. We find that the radiated energy is given by a non-local expression integrated over the string world-sheet. We also make the corresponding computation for a charged string in six-dimensional classical electrodynamics, thereby generalizing the Larmor formula for the radiated energy from an accelerated point particle.Comment: 12 page

    Free tensor multiplets and strings in spontaneously broken six-dimensional (2,0) theory

    Full text link
    We first review the representations of the six-dimensional (2,0) superalgebra on a free tensor multiplet and on a free string. We then construct a supersymmetric Lagrangian describing a free tensor multiplet. (It also includes a decoupled anti self-dual part of the three-form field strength.) This field theory is then rewritten in variables appropriate for analyzing a situation where the R-symmetry is spontaneously broken by the vacuum expectation values of the scalar moduli fields. Finally, we construct a supersymmetric and kappa-symmetric action for a free string.Comment: 15 pages, LaTe

    Thomson scattering of chiral tensors and scalars against a self-dual string

    Get PDF
    We give a non-technical outline of a program to study the (2,0) theories in six space-time dimensions. Away from the origin of their moduli space, these theories describe the interactions of tensor multiplets and self-dual spinning strings. We argue that if the ratio between the square of the energy of a process and the string tension is taken to be small, it should be possible to study the dynamics of such a system perturbatively in this parameter. As a first step in this direction, we perform a classical computation of the amplitude for scattering chiral tensor and scalar fields (i.e. the bosonic part of a tensor multiplet) against a self-dual spinnless string.Comment: 24 pages, LaTeX, 2 figures. v2: added discussion on supersymmetry in Ch.

    Comparison of methods for determining the fatty acid composition of photosynthetic tissues

    Get PDF
    The fatty acid (FA) composition of photosynthetic tissue differs from that in other plant or animal tissues. In leaves, the lipid fraction constitutes less than 10% of the dry weight and is mostly located in the chloroplasts. An extraction solvent should dissolve polar lipids readily, but should also overcome interactions between the lipids and the tissue matrix. A mixture of chloroform/methanol (C/M) is commonly used. However, less toxic alternative methods such as hexane/isopropanol (H/I) and ethanol (E) have been suggested. In this preliminary study we compared the effectiveness of these three methods which are used as standard extraction protocols for FA analysis of plant material at three different European Universities. C/M extraction gave the highest total FA content and H/I the lowest, suggesting that C/M is indeed the best general-purpose lipid extraction solvent. Significant differences were also observed for FA composition including the ratio of saturated to unsaturated FA indicating selectivity of the various solvents in extracting different individual FA. Further and more detailed investigations are required to confirm this hypothesi

    Classical self-dual strings in d=6, (2,0) theory from afar

    Full text link
    We show how one can get solitonic strings in a six-dimensional (2,0) supersymmetric theory by incorporating a nonlinear interaction term. We derive a zero force condition between parallel strings, and compute a metric on a moduli space which is R4R^4 when the strings are far apart. When compactifying the strings on a two-torus we show that, in the limit of vanishing two-torus, one regains the moduli space of two widely separated dyons of equal magnetic charges in four dimensions.Comment: 13 pages, clarifications and added reference

    Conformal anomaly of Wilson surface observables - a field theoretical computation

    Full text link
    We make an exact field theoretical computation of the conformal anomaly for two-dimensional submanifold observables. By including a scalar field in the definition for the Wilson surface, as appropriate for a spontaneously broken A_1 theory, we get a conformal anomaly which is such that N times it is equal to the anomaly that was computed in hep-th/9901021 in the large N limit and which relied on the AdS-CFT correspondence. We also show how the spherical surface observable can be expressed as a conformal anomaly.Comment: 18 pages, V3: an `i' dropped in the Wilson surface, overall normalization and misprints corrected, V4: overall normalization factor corrected, references adde

    Near- to mid-infrared picosecond optical parametric oscillator based on periodically poled RbTiOAsO4

    Get PDF
    We describe a Ti:sapphire-pumped picosecond optical parametric oscillator based on periodically poled RbTiOAsO4 that is broadly tunable in the near to mid infrared. A 4.5-mm single-grating crystal at room temperature in combination with pump wavelength tuning provided access to a continuous-tuning range from 3.35 to 5 mu m, and a pump power threshold of 90 mW was measured. Average mid-infrared output powers in excess of 100 mW and total output powers of 400 mW in similar to 1-ps pulses were obtained at 33% extraction efficiency. (C) 1998 Optical Society of America.</p

    Prospective Life Cycle Assessment of Graphene Production by Ultrasonication and Chemical Reduction

    Get PDF
    One promising future bulk application of graphene is as composite additive. Therefore, we compare two production routes for insolution graphene using a cradle-to-gate lifecycle assessment focusing on potential differences in energy use, blue water footprint, human toxicity, and ecotoxicity. The data used for the assessment is based on information in scientific papers and patents. Considering the prospective nature of this study, environmental impacts from background systems such as energy production were not included. The production routes are either based on ultrasonication or chemical reduction. The results show that the ultrasonication route has lower energy and water use, but higher human and ecotoxicity impacts, compared to the chemical reduction route. However, a sensitivity analysis showed that solvent recovery in the ultrasonication process gives lower impacts for all included impact categories. The sensitivity analysis also showed that solvent recovery is important to lower the blue water footprint of the chemical reduction route as well. The results demonstrate the possibility to conduct a life cycle assessment study based mainly on information from patents and scientific articles, enabling prospective life cycle assessment studies of products at early stages of technological development
    • …
    corecore